

November 30th, 2018

Chrome Proposed Feature Report

Authors
Brynnon Picard (15bdrp@queensu.ca - #20005203)
Roy Griffiths (18rahg@queensu.ca - #20137434)
Alex Galbraith (18asrg@queensu.ca - #20135646)

Sam Song (15shs1@queensu.ca - #10211857)
Bradley Kurtz (15bdk2@queensu.ca - #20020794)

Dongho Han (16dhh@queensu.ca - #20027554)

1.0 Abstract
This report describes our proposed function, its impact on the concrete architecture of Google
Chrome and explains the rationale of choosing one of two approaches proposed. In our previous
report, we obtained our final conceptual architecture and concrete architecture from the
documentation of the open source analogue and Chromium source code. This allowed us to
identify major subsystems and crucial design elements such as Chrome’s multi-process
architecture, use of implicit invocation, and Renderer/Browser decoupling. Through this process
and running through use cases allowed us to identify the concrete architecture of Chrome.

In producing this report we examined the concrete architecture and how our proposed program
can be implemented into the architecture. Our proposed program suggests predicted words once
the user stops typing for the specified time. It will involve the Browser and Renderer subsystems
for calculating the prediction algorithm and displaying a popup for the suggested words. We
suggested two different approaches for predictive text, approach A and approach B, for
implementing the function into the architecture. SAAM analysis was performed on both
approaches, and approach A was chosen due to approach B’s non-functional requirement
violation.

Ultimately, our concrete architecture remained, and architecture is still Object-oriented,
multi-process architecture supported by an implicit invocation for communicating between the
Browser and Renderer. Despite all the additional functionality implemented, our architecture has
no additional subsystems or dependencies.

2.0 Introduction
In this report, we set out to solve a long fought battle with productivity. We propose a new
feature for Google Chrome that will increase user productivity by providing tailored text
prediction and spell checking. Before we dive into the implementation, we must briefly discuss
the architecture of Chrome which is displayed in Figure 1 below. Chrome has an
Object-oriented, multi-process architecture, supported by an implicit invocation for inter-process
communication. The most important subsystems for this report are the Renderer and Browser
subsystems. The Renderer deals with the rendering of pages and includes Blink, a standalone
engine that processes HTML and CSS, and V8 which processes Javascript. There can be multiple
instances of the Renderer, each which run in their own process. The Browser manages the
Renderers and all other components. Inside the Browser is the Kernel which is the brain of
Chrome and manages data flow between components. Data persistence deals with local and
remote data storage. Mojo is used to communicate via inter-process communication with the
Renderers. Finally, the UI displays the user interface.

Our feature would appear in a popup above the user’s caret (see Fig 2. below). The feature
should not reduce the user experience by causing lag, nor should it endanger the user’s security.
We propose two approaches for implementing this feature. In the first, processing the current text
the user is typing and producing suggestion is performed in the Browser kernel, while rendering
the popup is performed in the Renderer’s Blink module. In the second approach, the Renderer’s
Blink module performs both the word prediction and rendering (See Figure 1). In both
approaches, Data Persistence in the Browser, and V8 in the Renderer are used for storing data
and acting on the popup interactions respectively.

By performing a SAAM analysis, we were able to decide which approach was optimal. We
analyzed each approach with respect to the stakeholders: Google, Google shareholders,
Developers, and Users; and the NFRs: performance, portability, interoperability, management,
and security. We found that while approach B produced better performance and had lower
management costs, it also exposed a security risk which would be unacceptable to our
stakeholders. Thus we settled on approach A.

After running through the primary use cases and creating some sequence diagrams, we found
that neither approach had an effect on our architecture. The majority of the work would be in
implementing the text prediction and data structures. In our selected approach, both of these
functionalities would be located in the Browser subsystem, thus Chrome’s browser team would
be the most effective team to work on the project. Additionally, since Android (Owned by
Google) already has text prediction, it may be beneficial for these teams to collaborate on text
prediction.

Figure 1: Our architecture after the implementation of the feature, showing which components

will be affected.

3.0 Proposed Feature - Predictive Text

3.1 Overview
The feature we are proposing is a word suggestion popup which will appear when a user is
typing into an input field. This is similar to what might be found on an Android or iOS device
when the keyboard is open. Figure 2 shows a mockup image of what the feature would look like

when active. Here, the user has typed in some words and the popup is displaying some
possibilities for words the user might want to choose, and if one is selected it will swap out the
word being typed by the user. This feature would employ a local dictionary of words, which
would be customized to the user based on the words they are most likely to use.

This feature will provide an enhanced user experience by improving user productivity when
typing. It can help users to figure out what word they’re thinking of but aren’t sure how to spell
or to choose word predictions while they’re partway through typing a word to speed up their
typing speed.

Figure 2: A mockup of the proposed feature.

3.2 Functional Requirements
We identified several functional requirements for our feature. An interactive popup should
appear when a user begins typing in an input field which will appear above the user’s cursor,
displaying a maximum of 3 suggestions. It should move with the user’s caret, and if one of the
suggestions is selected, it should replace the current word that the user is typing. When the user
pause for specified amount of time (< 0.5 seconds), the popup should suggest commonly used
words. These word suggestions would be based on the spelling of the word, and would look for
similarly spelled words or, if the user has misspelled what they’re typing, the correct version of
the word. The feature will maintain a customized prediction data structure based on the user’s
inputs across time, which would be synced with the cloud once per day to update the prediction
network across all devices on the user’s Google account.

3.3 Non-Functional Requirements
In terms of performance, the popup should populate with suggestions and be prepared to display
in under 500 milliseconds. This will ensure the feature won’t be too resource-intensive, but will
still be useful when the user stops typing to consider their options. This is the same amount of
time the popup waits to show anyway. For security, the new feature should not introduce any

new security vulnerabilities. From a managerial standpoint, a functional version of this feature
should be possible to complete in under 12 business days by 2 people. Of course, there will need
to be quite a bit of time to properly test this feature as well. For portability, this feature should
work across all desktop versions of Chrome, while mobile is not necessary as iOS and Android
already have a similar feature. And finally, for interoperability, user data should either be stored
as or exportable as XML so that it can be easily synced across platforms.

Evolvability: Our program is by definition specifically intended to evolve well. The words that
the feature will predict is based data structure which stores most used words and all the previous
words typed by the user. As time goes on the prediction logic will increase in accuracy.

Testability: The predictive text and popup modules should be implemented as standalone
functionalities and be glued together into our functionality via glue code. Each of the these
modules can then be unit tested on their own, leading to good testability. The visual popup
module is slightly harder to test as at least part of it requires a person to verify the visuals look
correct.

3.4 Testing
Prediction Use Case: Train or populate a text prediction algorithm based on the first 75% of a
large text source. This could be from a book, or perhaps private emails from Google’s email
servers. Next the predictive text is tested on the remaining 25% of the text, recording the
percentage of correct predictions. The required rate of prediction depends on whether the word is
partially complete, its position in the sentence and the frequency of the word in general.

Spell Check Use Case: Spell check is already implemented in Chrome, ensure that it is working
as intended in the new feature.

Sync Use Case: Sign into two devices. On one device, populate the predictive text with an
unusual set of data, e.g., the script of Shrek. Open Chrome on the second device. The text
predictions on the second device should now resemble the text used to populate the first device.
(E.g. when writing “Get out of my”, one of the next words predicted should be “swamp!”)

UI Use Case: Ensure popup functions correctly on a wide range of inputs. This should be tested
on both simple input forms, and more complex Javascript based editors such as Google Docs.

4.0 Proposed Approaches
Initially, we had two approaches which would be able to achieve the functionality of our
proposed extension. The two approaches we made were very similar and the differences only
consisted of where a certain method would be applied. However, although they only differed in
this aspect, the effects they had on the NFRs were significant. This will be described in great
detail below in our SAAM analysis.

Approach A: Here we started with Blink sending the text being input into the system to the
Kernel via IPC through Mojo. Then Kernel would retrieve prediction data from Data Persistence
so it could apply this data on to our input text to create some suggestions to what is being typed.
These suggestions would then be returned to the Blink via IPC through Mojo so that it is able to
display these suggestions on screen to the user so they may select which is most appropriate. We
have included a detailed sequence diagram later in this report.

Approach B: As mentioned before, the only difference between the two is where the prediction
data is applied. So, in our first call from Blink to Kernel, instead of sending the input text to
Kernel, it simply asks to retrieve the prediction data. Once the prediction data has been retrieved,
Blink now applies this to the input text to create the suggestions itself and thus display them on
screen to the users.

To describe what the prediction data stored within Data Persistence is, it is essentially a local
dictionary. As well as the this, because our extension also considers the previous words typed in
the sentence, the data must contain a hash table of all words which come after one another. As
well as the hash table we decided to consider words which the user types often. To achieve this,
the data contains a weighted graph according to how often a user has selected it. Thus if you type
a certain word often then it is likely to offer that word as a suggestion if you start typing the
letters contained in it. This will update once a user has selected a certain suggestion. We have
described the process in greater detail in a sequence diagram later on.

4.1 Concurrency
Our feature will run concurrently with the main rendering thread. This is important as it will
improve the overall performance of the system since it will not block the main rendering thread.
And if the feature does slow down considerably the user’s browsing experience will not be
impeded. While the feature is enabled, it will wait for a pause in user typing and then a dedicated
prediction thread will be stimulated to retrieve text suggestions. This thread will then be given a
callback to the Renderer to display the text suggestions on the page.

5.0 SAAM Analysis
Below is a table analyzing the relationship between our NFRs and approaches:

Attribute Approach A Approach B

Performance Performance of approach A is
significantly affected due to the
distribution of code, more IPC
communication is required to
perform prediction everytime

Due to the localized code, the
performance of approach B will
be better than approach A

Interoperability Good interoperability Good interoperability

Portability Good portability Good portability

Management Worse management because
Browser and Renderer are both a
big part of the implementation,
requiring teams to work on both
areas.

Good management. Requires less
effort than approach A because
this implementation is mostly
Rederer focused, requiring only
one team.

Security All critical user data is stored
inside data persistence, which is
safer compared to other programs

All code and data are stored inside
the renderer subsystem. As the
renderer will run any script given
to them, approach B will have a
higher chance of being
compromised

We have displayed the related stakeholders according to each non-functional requirement in a
detailed table down below:

Attribute Chrome User Development Team Google Google Shareholder

Performance Performance is the
most important metrics
for general users,
people will be
frustrated

Performance of
predictive text needs to
be on par with other
chrome function for
consistency

Google is expected to
make high-quality
ware, the performance
of predictive text needs
to be above average to
continuously meet the
expectation

If Google creates low
quality software, the
market expectation will
decrease which will
cause a decrease in the
price of share

Interoperability N/A Increased
interoperability makes
the feature easier to
modify in the future
and leverage for other
projects.

Data is potentially
useful for other evil
privacy invading
projects, which Google
loves. Interoperability
make the data easier to
use for other projects.

Privacy invading
projects made possible
by data Interoperability
could be great for
profits. Shareholders
love profits.

Portability Some chrome users use
multiple platform,
chrome will be more
convenient if
functionality remains
the same

The feature needs to be
able to work on all
devices of Chrome,
including mobile
versions, correctly.

Google is expected to
make high-quality ware
and need to give users a
seamless experience
across all versions of
Chrome.

Google’s approach of
tackling all major OS
will attract more users
which will result in
higher profit

Management N/A The Development team
cares greatly about
management. The more
efficiently the project
can be completed, the
better.

Better management
means more efficient
production of the
product, and thus better
profit margins.

Better management
means more efficient
production of the
product, and thus better
profit margins.

Security Chrome can hold
private data and some
users will regard
security over
performance

Google chrome is
known for their
excellent security,
implemented function
need to meet the
expectation

Google has multiple
privacy issues, if the
program’s security is
breached, people will
stop using their
browser as thee are are
multiple alternatives.

If Google creates
software with low
security and a major
security breach occurs,
the market expectation
will decrease which
will cause a decrease in
the price of share

Approach B will have higher performance as it requires less IPC communication; however, it is
not really a major issue as the user does not need instant feedback as long as their normal input is
not affected. Approach B will be faster to implement and easier to maintain since all the code
will be in one localized place and the Blink subcomponents of Renderer already contains the
SpellChecker module thus it makes sense to add the predictive text in the same place as in
Approach B. A compromised Renderer in Approach B might be able to access predictive text
data such as word usage frequencies. This is a large violation of our NFR centred around
security. Approach B requires each Renderer to maintain a cached copy of the predictive text
data which, depending on how the prediction is implemented, could be a fairly large (e.g.,
dictionary + set of neural network weights). Both implementations will have to be wary of
portability but should rely entirely on other abstracted code in the codebase, so portability
shouldn’t be an issue. Both approaches allow for the processing to be run asynchronously,
preventing user experience from being affected. While Approach B will be faster, it directly
violates one of our NFRs, specifically our security requirement. This violation outweighs the
additional performance and development costs. An implementation that exposes security risks
would be detrimental to users, and due to its effect of public opinion, would be poorly regarded

by shareholders and Google. Ultimately the additional performance and labour costs in A are
outweighed by increased security, thus we have chosen A as our best approach.

6.0 Sequence Diagrams

Figure 3: Sequence diagram of requesting, caching, and displaying suggested words,
followed by a sequence in which the user has clicked a suggestion, and our feature modifies

the typed text.

Figure 4:Sequence diagram of the Renderer caching and sending batched changes to the
Browser to update prediction data.

The above sequence diagrams display the two major groups of sequences. In the first (Figure 3)
we see the sequences that occur when the user types and uses the popup to modify their text. In
the second (Figure 4) we see the sequence that relates to the caching of text modifications.

Most importantly, both sequences are consistent with our original architecture. No changes need
to be made to the architecture in order to implement this feature.

7.0 Affected Directories

7.1 Rendering Popup
Implementing the popup would require modification to third_party/blink/renderer/core/input/ to
handle input events and begin the chain of actions. Modifications to
third_party/blink/renderer/core/html/forms may be helpful for streamlining the access of input
related data. Blink’s Mojo hooks should be modified to facilitate new messages regarding the
prediction requests at third_party/blink/renderer/core/mojo. For the actual implementation of the
popup, third_party/blink/renderer/core/dom and third_party/blink/renderer/core/page would be
modified.

7.2 Data Format
While the data format must be carefully designed, Chrome has generic methods for storing
abstract data so it is unlikely that there will need to be any modifications made to Data
Persistence itself.

7.3 Text Prediction
A new module under chrome/browser would need to be added to encompass text prediction. This
should be implemented as a standalone module. New mojo hooks would need to be added to
handle IPC prediction requests.

8.0 Team Issues
Since we chose Approach A, the Browser subsystem will take the most work to implement and
therefore it is likely the critical path of developing our feature. Thus, the optimal team to work
on the implementation is the Browser team. Also, the developers working on this feature may
want to communicate with the Google developers who worked on Android. The Android
keyboard already has a similar predictive text feature, so those developers would have a wealth
of knowledge in this domain.

9.0 Limitations and Lesson Learned
Throughout the duration of this project, our group encountered several limitations that needed to
be overcome.

● We found that there was no publicly available reference architecture for typing
suggestion systems, which meant we had to figure out the implementation details
ourselves. This took valuable time and made it difficult to tell if we were going in the
right direction.

● There were also only a couple of subsystems that would make sense to use for this
feature, so there were a limited number of ways that we could possibly implement it.

● There was a limited amount of information online about conducting a SAAM analysis,
which made it difficult to understand what we were meant to do on that front. There was
no information on the slides nor in the readings which meant we had to do a great deal of
research on how to conduct an analysis we were never taught.

That being said, we also learned some valuable lessons while working on this project that we
believe could be applied for our careers in the future.

● We realized that in a well-developed architecture, implementing new minor features
shouldn’t require major architecture redesign. As we learned from the course, redesigning

an existing architecture is very expensive and time-consuming. This could also cause
major stability issues which could compromise the whole architecture.

● Lastly, we also learned that there are always trade-offs in the possible implementations of
any software feature as no one method will be the best in all cases.

10.0 Conclusion
We proposed a feature to increase user productivity by providing tailored text prediction and
spell checking. These features would appear in a popup above the user’s cursor. The feature
should not reduce the user experience by causing lag, nor should it endanger the user’s security.
The popup will provide the user with word suggestions as they type, somewhat similar to the
ones found on smartphones with the added capability of correcting spelling. We’ve created two
possible approaches to our proposed feature for our extension. The two approaches we made
were very similar and the differences only consisted of where a certain method would be applied.
While Approach B will be faster, it directly violates one of our NFRs, specifically our security
requirement. An implementation that exposes security risks would be detrimental to users, and
due to its effect of public opinion, would be poorly regarded by shareholders and Google.
Ultimately, we believe that this violation outweighs the additional performance and development
costs.

