

November 9th, 2018

Chrome Concrete Architecture Report

Authors
Brynnon Picard (15bdrp@queensu.ca - #20005203)
Roy Griffiths (18rahg@queensu.ca - #20137434)
Alex Galbraith (18asrg@queensu.ca - #20135646)

Sam Song (15shs1@queensu.ca - #10211857)
Bradley Kurtz (15bdk2@queensu.ca - #20020794)

Dongho Han (16dhh@queensu.ca - #20027554)

1.0 Abstract
This report describes our concrete and revised conceptual architecture of Chrome, outlines our
derivation process, and explains our rationale for each subsystem, module and connection in our
architecture. In our previous report we obtained our initial conceptual architecture from the
documentation of the open source analogue, Chromium. This allowed us to identify major
subsystems and crucial design elements such as Chrome’s multi-process architecture, use of
implicit invocation, and Renderer/Browser decoupling. Through this process and running
through use cases allowed us to identify the less important but nonetheless crucial subsystems,
Network, Graphics, Extensions, and Plugins.

In producing this report we examined the source code supplied to us. We did this through the
Understand tool, where we were able to see the dependencies between components and
subsystems. This greatly aided us in creating our concrete architecture as well as updating our
conceptual architecture. Understand also allowed us to reveal the components within the
subsystems which we didn't know existed. The process of examining the source code and
dependencies was repeated until we had a diagram exhibiting all the relationships with minor
alterations. From this, we found that our architecture was remarkably more coupled than we had
initially thought it was. Places where we had one component relied on another were often
actually relying on each other to function.

Ultimately, our proposed architecture remained and Object-oriented, multi process architecture
supported by implicit invocation for communicating between the Browser and Renderer. Despite
all the additional coupling, our architecture was by and large supported by our analysis of
Chrome’s concrete architecture.

2.0 Introduction
The purpose of this report is to explore the concrete architecture of Google Chrome and explain
the process our team used to derive our final concrete and revised conceptual architecture. The
report has four main content sections. The first section is derivation where we will discuss how
we derived our architecture and the rationale for many of the major decisions. The second
discusses interesting unexpected dependencies. Discussion of unexpected dependencies will
include files, components and source code involved, and the reason for why the dependencies
exist. The third section section describes our final architecture and sequence diagram in detail,
including a description of each subsystem and module, as well as the connections between them.
The fourth section reviews limitations in our analysis and lessons we learned during the process
of derivation. Finally, we will wrap everything up with a conclusion, followed by a list of
references.

In our previous report, we determined that Chrome has both an object oriented architecture and a
multi-process architecture, supported by implicit invocation. We constructed an initial
architecture diagram (see Figure 3) using only documentation on Google Chrome without

looking into the code at all. For this investigation, we now look into the code of Google Chrome
and reassess our original architecture. To do so, we derive a concrete architecture of Google
Chrome which includes all dependencies within the code. We next strip away any hacks leaving
behind Chrome’s conceptual architecture.

Our derivation of Chrome’s concrete architecture is driven by the use of Understand tool,
Chromium’s design document website, and the Chromium code search tool. Using Understand
tool we organized code directories into components, which produced a dependency graph. We
then divided dependencies into two parts, legal and illegal. Legal dependencies are a connection
between components that exist for a proper reason (e.g. resource sharing and constant sharing).
Illegal dependencies are connections that exist because of an error in Understand tool, incorrectly
categorized file, or a hack by a developper. Illegal dependencies are analyzed and removed and
all unexpected legal dependencies have been reflected on and explained in chapter 4.2 Reflection
Analysis. Since there are too many dependencies to analyze, we have omitted some trivial
dependencies which will be explained later.

Derivation of sequence diagram was done using Chromium’s documentation and Chromium
code search. We started the derivation by reading Chromium documents on specific use cases
[7]​. Then making guesses on which method should be responsible for a certain functionality.
After finding the correct method, we used the inspector tab on the Chromium code search
website to follow call hierarchy upwards and downwards to complete the sequence diagrams.

3.0 Derivation Process
After having a complete view of Chrome’s code, we have gained a great deal of knowledge of
Chrome’s architecture, and confirmed many of the decisions we made on our initial conceptual
architecture diagram (see Figure 3) and sequence diagrams. With the help of the source code
analysis program Understand and Chromium code search website, we were able to derive a new
subsystem and new dependencies between our previously existing subsystems.

We began by mapping source code to our original conceptual architecture. Our concrete
architecture has many unexpected dependencies, most subsystems relied on most other
subsystems. We figured this was likely incorrect, so we looked deeper into the source code
folders, and pulled out bits of code that were in the wrong components, and moved them to the
right ones, giving us the conceptual diagram in Figure 1. We initially believed that we could put
the “base” folder into Browser, which resulted in a massive number of dependencies to and from
Browser. We soon realized that this was essentially all common code, so we split it off into its
own Library component. We then established which remaining dependencies were hacks, based
on careful code analysis, and removed these hacks to produce our revised conceptual diagram
seen in Figure 2. Later in this report we will discuss the dependencies and hacks found.

To justify the dependencies, we picked out some dependency files and figured out what they did.
To do this, we looked into the subsystem’s file to see what was being imported and what
functions or variables were being used. To determine the purpose and functionality of the

dependencies, we utilized the comments in both code files, looked at what the functions
specifically did (inputs, outputs), and the “readme” text files in each subsystem being examined.

As for the sequence diagrams, we first searched for code relating to a password being submitted.
Once we found this, we would continue tracing the method calls until we reach the point of a
password being saved. Sometimes we worked in reverse though, and found a function that occurs
a lot later in the sequence diagram. We were able to do this by using cs.chromium.org’s feature
that displays which files call the selected method. It was sometimes challenging to trace the
method calls if IPC was used to communicate with other subsystems, as it wasn’t always clear
what files were used to handle the receipt of an IPC message.

We then updated our conceptual diagram from the previous assignment by adding the new
Library subsystem and new dependencies found from the concrete diagram, but excluding the
unnecessary hacks found.

4.0 Concrete vs Conceptual Architecture

Figure 1: Concrete architecture diagram

4.1 Reflexion Analysis

Below are a collection of unexpected dependencies we identified and analysed from our concrete
architecture. It is worth noting that we have not included dependencies on the Library subsystem
as these are fairly obvious: all subsystems depend upon Library for shared code such as string
manipulation.

Network -> Graphics
File ​quic_server.cc​ depends on ​components/viz/common/features.h

Description:​ “features.h” appears to be a file to hold constants related to the Graphics
component. “quic_server.cc” is a file that handles communication over the QUIC transport-layer
network protocol. There appears to be no reference to any of the constants “features.h” exports
inside the “quic_server.cc” file, only the initial import statement. Since the import statement
looks through the PATH environment variable path list and the LIB environment variable path
list, it’s possible that Understand has detected it as the wrong features.h file, as there are many in
the source code, and obviously some code has been removed by TAs.

Network -> Browser
File ​cert_verifier.h​ uses type ​CertificateList​, which is defined in
user_network_configuration_updater.h

Description:​ “user_network_configuration_updater.h” defines the type CertificateList, which
represents an array of X509 public key certificates. “cert_verifier.h” is used to verify the validity
of certificates and uses the CertificateList type to store a list of trust anchors, which are private
certificates typically used by software on your computer that intercepts network traffic (like
security software). This looks like a hack to avoid reusing code by defining the CertificateList
type twice.

Extensions -> Network
File ​url_handlers_parser.cc​ depends on ​net/base/network_change_notifier.h

Description:​ In the dependency between Extensions and Network, “network_change_notifier.h”
is used for monitoring the network for changes, such as disconnecting from WiFi, Bluetooth, 3G,
and as well as IP changes. It then notifies registered observers of those events, using implicit
invocation style architecture. “url_handlers_parser.cc” seems to be the observer class for
Extensions to receive these events from Network. This appears to be a legitimate dependency as
some extension programs would need to know the status of the network connection.

Extensions -> Renderer
File ​chrome_extensions_client.cc​ depends on ​url_constants.h

Description:​ This was found to be a hack as it doesn’t use any methods and only uses constant
variables stored in Renderer. Almost all of the constants comprise of URLs for “Learn More”
pages for various purposes such as an error page. This dependency likely exists purely for

code-reuse because it would be inefficient to copy and paste the same links into the Extensions
subsystem.

Extensions -> Graphics
File​ chrome_extension_messages.h​ depends on​ ui/gfx/transform.h

Description:​ “chrome_extension_messages.h” handles inter-process communication related to
Extensions, and is used to forward messages to extension processes when necessary.
“transform.h” seems to be a file for performing transformation operations on matrices. More
specifically, “chrome_extension_messages.h” appears to send data related to the accessibility for
extensions, in the form of a data structure called an accessibility tree. “transform.h” provides
methods and variables related to how something would be displayed/transformed, so that
“chrome_extension_messages.h” can pass that on as part of the data needed to support
accessibility in Chrome.

Renderer -> Extensions
File ​chrome_extensions_renderer_client.cc​ includes ​extensions_constant.h

Description:​ Renderer depends on Extensions in order to illustrate all extensions dialogue boxes.
It require constants for render to render correct form of graphics for all extension. For example,
extensions.h includes “extern const char kTextEditorAppId[]” to recognize given extension is
text editor extension not an in-app payment support application.

Renderer -> Network
File ​web_url_request_util.cc​ relies on ​net/base/load_flags.h

Description:​ As it turns out, Renderer has a fair number of files related to fetching network
resources, which we did not anticipate. One such file is “web_url_request_util.cc” which
contains support for requesting files such as images, scripts, fonts, stylesheets, and more.
“Load_flags.h” in Network provides flags used for general, generic information about load
requests. This dependency seems to exist so that code would not be duplicated.

Renderer -> Graphics
Cached_bitmap_ Types CrossThreadSharedBitmap at ​pepper_graphics_2d_host.h

Description:​ Renderer uses the resource under graphics/cc/resources. Cached bitmap is a bitmap
that was recently released by the compositor and maybe used to transfer byte to the compositor
again. This dependency exists for resource reuse purposes. Renderer can now use bitmap stored
as cache under graphics directory instead of calling new bitmap everytime

Graphics -> Browser
File​ buffer_queue.cc​ relies on ​display_snapshot.h

Description:​ There are a large number of dependencies between Graphics and Browser, many of
which are tests or logging hacks, although there is also a fair bit of code related to the UI frame,
which Graphics needs to know the scale and location of to properly draw graphics. One of the

more interesting dependencies is from “buffer_queue.cc”, which is a framework for reading and
writing to GPU memory. “buffer_queue.cc” relies on “display_snapshot.h” which takes a
“snapshot” of the current display state at any given time. The reason for this dependency is that
UI is inside Browser, so to save the display state Graphics needs to communicate with UI.

Extensions -> Browser
File ​notification_style.cc​ includes ​message_centre_constant.h

Description:​ When Extensions tries to renderer a notification, it needs Browser to pass constants
that determine size of all graphical components. When Extensions notifies the user using a
dialogue box, Browser will tell Extension the size of the dialogue box, width and length of okay
button, among other things. This is something that could be internalized as developer mentioned
“// ​TODO​(estade): many of these constants could be internalized.” at
message_center_constants.h::14.

4.2 Comparison of Original and Revised Conceptual Architecture

Figure 2: Our revised conceptual architecture diagram

Figure 3: Initial Conceptual Architecture

Our revised architecture includes newly added component library and a subsystem mojo and
many new dependencies. Inside the Browser subsystem, new dependencies from Data
Persistence to Kernel, Kernel and Data Persistence to mojo. Chapter 4.1 explained the rationale
of these newly created dependencies, and 4.4 will cover the purpose of each subsystem. The
dependency between Rendering to Plugins is removed because plugin related code was removed
from the Chromium file, and Understand tool could not make actual dependencies.

Ultimately, comparing Figures 2 and 3, our architecture has not changed all that much. While
many extra couplings have been introduced, our fundamental subsystems have, with the
exception of Library, remained untouched. Most importantly, our investigation into the code of
Chrome confirmed what we had learned from the documentation: Google Chrome has an Object
oriented architecture, and a multiprocess architecture supported by implicit invocation for
inter-process communication. The presence of Mojo, entire folders dedicated to sandboxing, and
excessive amounts of implicit invocation throughout the codebase confirm our previous findings.

4.3 Sequence Diagrams
Below are our updated sequence diagrams.

Figure 4: Sequence diagram illustrating Chrome rendering page with Javascript.

Our first use case entails Chrome displaying a page with Javascript. Figure 4 illustrates the
sequence of events that occur in order to render the page. First, Chrome is notified of a
navigation request. This request could come from any number of sources including a Javascript
navigation, a user interacting with the UI, or a redirect request. Next, the Browser constructs a
new Rendering instance by calling CreateRenderProcessHost which creates both the Browser
and Renderer side of the IPC communication pipes. The new Renderer is constructed with
knowledge of its site instance, i.e., the page it should be loading. Once constructed the
Renderer’s Blink component sends a resource request over IPC to Mojo in the Browser using
PostTask to implicitly pass a download-to-blob-registry binding. This binding requests that a
piece of data be downloaded and placed inside the Renderer’s local data store, or blob registry.
Mojo then forwards this request to the Kernel using BeginDownload, which causes the Kernel to
create a URLRequest and run it. The URLRequest recognizes the request as an HTTP request,
and creates a URLRequestHTTPJob which when started, retrieves the page data. At each step the
objects were provided with callback functions, and these are used to pass the data back down the
chain to Mojo, which then passes the data back to Blink over IPC. A callback then triggers Blink
to begin processing the received data. Blink then recognises there is Javascript to run, and

invokes ExecuteScriptInMainWorld to run the Javascript, which then returns void. It is worth
noting that this is only one possible path. At almost every stage the route changes depending on
the origin of the request and the data returned. There are also many hundreds of inter component
calls for minor requests we have not included as these would only confuse the diagram.

Figure 5: Sequence diagram illustrating the use case of user sign in in and credential store by
Chrome.

Our second use case entails a user signing into a web page and having their credentials stored.
There are two separate sequences shown in Figure 5, one for submission and one for saving the
password. When the user clicks enter on the sign in form, Blink will send a function call to the
kernel through PasswordFormsRendered(visible_forms, did_stop_loading). Then Kernel will call
UI through PromptUserToSaveOrUpdatePassword() so UI can display a dialogue box to the
user.

Once the user clicks “save password” the UI starts a new process by first calling SavePassword
function to Kernel in order to begin the password saving stage. After Kernel receives the
username and password, then it sends all data to Data Persistence using the Save function. Data

Persistence then modifies its database and enters the new credentials by calling
ActOnPasswordStoreChange.

4.4 Subsystem Breakdown

4.4.1 Browser
The Browser subsystem is at the core of our whole architecture, linking between all other
subsystems and processing any requests which have been made. This is achieved with the aid of
the four main modules: Kernel, Data Persistence, UI and our new component, Mojo. As we saw
in our previous diagram, the objects in red are our unexpected components and dependencies
whereas our objects in black are our expected ones.

Kernel​: This is considered the “brain” of the browser. All
data marshalling between other subsystems is handled
here, thus effectively sandboxing the whole environment.
Kernel depends on data persistence, UI and our new
component Mojo. Kernel must depend on Data Persistence
so it is able to load content such as extensions. Kernel must
also depend on UI so that it is able to return the result of a
user input if it has an effect on the interface. An example of
this could be if Javascript (running in a renderer) opens a
new tab, this command is sent to Kernel, which must then
notify UI. Kernel must rely on Mojo so that it is able to
communicate with other subsystems such as the Renderer
with IPC.

Data Persistence​: All data such as sign in details, bookmarks and cookies are stored internally
here. Data Persistence can also use the network subsystem to sync data through the cloud. Data
persistence must rely on Kernel as we found out in the event where data within the component
has changed and thus must notify Kernel about it. An example of this may be when a password
has been updated. Data Persistence must also rely on Mojo to communicate to the Renderer with
IPC, as was with the case with Kernel.

User Interface (UI)​: As the name suggests this is where all user input is handled. The UI depends
on Kernel. This is so user input such as the pressing of a key or the movement of the mouse can
be sent to Kernel for processing and distribution.

Mojo: ​We have added this new component to our browser subsystem after having examined the
source code. It handles and processes all interprocess communication (IPC).

4.4.2 Rendering
The Rendering subsystem’s function is to parse and render web pages. It contains 2 modules
which support this functionality. These are: Blink and the JavaScript V8 engine. Blink is a

rendering engine, which is responsible for rendering HTML and CSS web pages. It, in turn,
relies on the V8 engine to run any JavaScript that a given page uses.

Blink​: Blink is a rendering and layout engine, responsible for rendering web pages to display to
the user. It was created as a fork of the WebCore component of the Webkit engine, which is used
in browsers like Safari. Blink is developed separately from Webkit and contains support for the
Document Object Model (DOM) which enables JavaScript manipulation of HTML, and Scalable
Vector Graphics (SVG) ​[2]​. Blink relies on the V8 engine for executing JavaScript code, which
is an important part of most modern websites.

V8 Engine​: The V8 engine is a high-performance JavaScript engine
initially developed for Chrome. It improves performance over traditional
JavaScript interpreters by compiling JavaScript code directly into native
machine code before execution. This contrasts with traditional approaches
such as interpreting bytecode. Additional optimization is done dynamically
at runtime, through a variety of methods including inline expansion and
inline caching ​[3]​.

4.4.3 Graphics
Graphics is a subsystem for drawing graphics to the user’s device display. This is different from
Rendering, which is at a higher level and is more abstracted. Graphics contains the Skia graphics
library, which contains APIs for drawing to numerous target devices.

Skia:​ Skia is an open source 2D graphics library used in Chrome, the Android
OS, and Firefox, among others. Skia enables Chrome to draw shapes, text, lines,
and images. Skia’s extensive API enables effective graphics drawing across
many platforms and devices ​[4]​.

WebGL​: WebGL, or Web Graphics Library, is the primary library used by
Chrome to render 3D graphics. This was formerly OpenGL but after some code
inspection we found out that this was in fact what was used.

4.4.4 Network
The network subsystem handles all networking functions of Chrome, such as communicating
with servers and transferring files. It employs two modules for these tasks: URL Request, and
HTTP.

URL Request:​ URL Request is responsible for handling requests to and from
external servers. It keeps track of the various requirements that might be needed
to fulfill a given request, such as cookies, host resolver, proxy resolver, or cached
data ​[5]​. It relies on the HTTP module to fulfill requests that require
communication over HTTP.

https://docs.google.com/document/d/1xJNhw3M3-2eyDpuqH8ADW-FSzV_0HcSp8a9DUStrLN4/edit?disco=AAAACSEr9S8&ts=5bca99e7#bookmark=id.cx7ntpqqbwqq
https://docs.google.com/document/d/1xJNhw3M3-2eyDpuqH8ADW-FSzV_0HcSp8a9DUStrLN4/edit?disco=AAAACSEr9S8&ts=5bca99e7#bookmark=id.h4bmg09cdjon
https://docs.google.com/document/d/1xJNhw3M3-2eyDpuqH8ADW-FSzV_0HcSp8a9DUStrLN4/edit?disco=AAAACSEr9S8&ts=5bca99e7#bookmark=kix.fwcpl0prqwn7
https://docs.google.com/document/d/1xJNhw3M3-2eyDpuqH8ADW-FSzV_0HcSp8a9DUStrLN4/edit?disco=AAAACSEr9S8&ts=5bca99e7#bookmark=kix.kcs62byth5re

HTTP:​ Hypertext Transfer Protocol is the primary application protocol of the internet, and is at
the core of any web browser’s network communications. The HTTP module is used by the URL
Request module to handle all HTTP traffic.

4.4.5 Extensions
Extensions contain the application programming interface (API) for third-party developers to use
for writing browser extensions, small programs that affect the user’s browsing experience.
Browser extensions such as ad blockers and password managers have become widely used today,
and extensions are a significant part of nearly every major browser​.​ ​Since extensions typically
require data to function, the Extensions subsystem also provides the ability for an extension
program to interact with and modify received HTML, CSS and JavaScript code.

4.4.6 Plugins
Plugins are similar to “Extensions” but it is more integrated into the browser’s core functionality
and is far more complex than browser add-ons. ​The main difference between the two is that
plug-ins provide extra functionality which does not modify the core functionality​.​ ​It is a
third-party program that is plugged-in to a web page and affects only the web page that is using
the plugin​.​ ​Examples of plugins would be Flash or a PDF reader. Essentially, the biggest
difference between Plugins and Extensions is that plugins are standalone programs that integrate
into Chrome whereas extensions are programs that can only be used in Chrome.

4.4.7 Library
Library:​ This is an entirely new subsystem we added to our architecture after
having examined the source code using Understand. Along with this we have
attached the dependency arrows to it to signify the fact that every other
subsystem relies on Library to function (apart from Plugin as we did not have
the code.) Library is essentially, as the name suggests, a collection of all the
code which is used and shared by all other subsystems.

5.0 Limitations and Lesson Learned
Throughout the duration of this project, our group encountered multiple limitations that brought
on many challenges that needed to be overcome.

● Understand is not a very stable program, and is very resource intensive. Many members
of the group were unable to run the software on their PCs, which made it difficult to
distribute work among us. Being a resource intensive program also meant it took a long
time to save our work, sometimes upwards to 10 minutes, only for the software to crash
and delete it. This cost us a lot of valuable time while working on our project and was a
major problem for our team.

● The Understand software would often pick the wrong file as a dependency if there were
multiple files with the same name and often crash when trying to inspect specific files.
Thus we lost valuable time trying to navigate through the dependencies without causing
the software to crash.

● Another limitation we encountered is that none of us had much experience with the C++
language which sometimes made understanding the source code difficult.

● Navigation was also a difficulty due to the large size of the program as it made it hard to
trace dependencies and sequences of function calls through the code. Finally, since some
source code had been purposely removed, it was impossible for us to verify Plugins
dependencies.

That being said, we also made several mistakes and learned valuable lessons while working on
this project.

● Despite initial difficulties, we figured out how to navigate the cs.chromium website by
following where a method call goes, and where methods are called from.

● We realised that in an actual workplace environment, the software we would work with
will be most likely be large and difficult to navigate. There may be poor documentation
and bad coding practices which could hamper our work, so the skills we have developed
to analyze source code will help us handle these situations.

● Code is not always as clean and perfect in reality as it is conceptually, so sometimes
hacks are necessary to get the functionality working within the bounds of time or
management constraints in the team.

6.0 Conclusion
In summary, Chrome’s architecture is not a neat as we expected, but nonetheless met most of our
fundamental expectations. Google Chrome is designed around an Object-oriented architecture,
supported by implicit invocation for inter-process communication. The Browser component acts
as the central subsystem, linking between all other subsystems and processing any requests
which have been made. As discussed earlier, this is achieved with the aid of the four main
modules: Kernel, Data Persistence, UI plus our newest component, Mojo. Chrome’s sandbox
architecture enforces strict security rules upon the browser ecosystem while promoting stability.
The source code for Chrome is massive, which makes it impossible to review every piece of
code as it would simply take too much time and effort. Instead, we decided that we needed to
focus our efforts on smaller specific sections. There were many dependencies we did not expect,
and even an entire component, which we called Library. Reviewing the actual source code of
Chrome gave us a glimpse into the messy reality of software development, where not everything
is as clear cut as in theory.

7.0 References
1. Chromium search (n.d.). Retrieved November 9, 2018, from ​https://cs.chromium.org
2. Core Principles. (n.d.). Retrieved October 18, 2018, from

https://www.chromium.org/developers/core-principles
3. WebKit. (2018, September 17). Retrieved October 19, 2018, from

https://en.wikipedia.org/wiki/WebKit
4. Chrome V8. (2018, September 24). Retrieved October 19, 2018, from

https://en.wikipedia.org/wiki/Chrome_V8
5. Graphics and Skia. (n.d.). Retrieved October 18, 2018, from

https://www.chromium.org/developers/design-documents/graphics-and-skia
6. Network Stack. (n.d.). Retrieved October 18, 2018, from

https://www.chromium.org/developers/design-documents/network-stack
7. Chrome resource loading documentation. (n.d.). Retrieved November 8, 2018, from

https://www.chromium.org/developers/design-documents/multi-process-resource-loading

https://cs.chromium.org/
https://www.chromium.org/developers/core-principles
https://en.wikipedia.org/wiki/WebKit
https://en.wikipedia.org/wiki/Chrome_V8
https://www.chromium.org/developers/design-documents/graphics-and-skia
https://www.chromium.org/developers/design-documents/network-stack
https://www.chromium.org/developers/design-documents/multi-process-resource-loading

