

Derivation Process : Dependency Graph
First used Understand to generate dependency graph

Derivation Process : Concrete
Next built a concrete graph
and found our unexpected
dependencies.

By analysing our unexpected
dependencies we found and
removed hacks from our
concrete architecture

Derivation Process : Reflexion Analysis
This architecture is object oriented
with implicit invocation and a
multiprocess architecture.

Most notable differences all of
libraries dependencies turned out to
be understand errors or hacks, and
Renderer and Extensions are much
more tightly coupled to other
components than we expected.

Architecture Overview
Browser: Central system that manages
renderer instances and UI

Rendering: Renders pages

Graphics: handles low level rendering of
visuals

Network: Handles network IO

Library: Shared code such as string
manipulation and generic utilities

Extensions: Handles Chrome’s extension
system

Plugins: Handles plugins such as Flash
player

Browser Subsystem

- UI handles user interface
- Data persistence stores bookmarks, passwords etc
- Mojo performs IPC
- Kernel strings everything together, is the “brain” of the

browser
- DP needs Mojo to send and receive certain info.
- Kernel uses Mojo to communicate.
- DP relies on kernel to notify it of changes to the data

store
- UI relies on Kernel to pass UI events to the Kernel
- Kernel relies on UI to tell UI what to display
- Kernel relies on DP to retrieve user data

Sequence Diagram (User Sign in and Credential Store)

Notable features:
- PasswordFormsRendered is

triggered via the event
system when a form is
submitted in the Renderer.

- PromptUserToSaveOr
UpdatePassword triggers
the creation of the UI popup
dialogue which is the end of
the first call stack.

- A user click event triggers
SavePassword from the UI
dialogue box

Reflexion Analysis (Unexpected Dependencies)
New Component

- Library is depended on by everything
Interesting Dependencies

- Graphics -> Browser
- buffer_queue.cc relies on display_snapshot.h

- Extensions -> Network
- url_handlers_parser.cc relies on

net/base/network_change_notifier.h

- Library -> Graphics
- shim_override_glibc_weak_symbols.h relies on

components/viz/common/features.h

(New) Relationships:
- Extensions -> Network

-> Browser
-> Graphics

- Rendering -> Extensions
-> graphic
-> Network

- Graphics -> Browser
- Data persistence -> Kernel
- All subsystem -> Library

Extension - Renderer Dependency

- Extensions -> Renderer
- chrome_extensions_client.cc

relies on url_constants.h

- A hack
- Stores links
- Code-reuse

Concurrency

- Looking through the code confirmed our previous assessment of Chrome’s
concurrency:

- Renderers run in their own isolated process, communicating with the browser via IPC
- Mojo sub-subsystem in Browser handles IPC communication between processes

- There are many files and dependencies that supported inter-process
communication between various subsystems such as:

- Mojo subfolder in Renderer subsystem provides hooks into the mojo IPC library
- Mojo subfolders throughout the browser that facilitate IPC

Team issues

- A large team with many developers located in different locations.
- Unable to know who programmed which sections.
- Some developers commented their code well, while some developers don’t

seem to write many comments at all.
- Developers add many tests in the code.

Proposed Feature for A3
- When a user is typing in an input field it will suggest words for them to use,

similar to the keyboard suggestion feature available on android or iOS
- Would involve Renderer interacting with Browser to retrieve suggested words,

possibly into data persistence to look for words commonly used by the user
to increase personalization

Lessons learned/limitations
- Understand is not a very stable program, and is very resource

intensive, which made it impossible for some group members to run
the software, and thus made it difficult to spread out work evenly.

- Understand would often pick the wrong file as a dependency if there
were multiple files with the same name.

- Understand would often crash when trying to inspect specific files.
- Learned to navigate the cs.chromium website. (Follow where a

method call goes, and where methods are called from)
- Since some source code has been purposely removed, it made it

impossible to verify Plugins dependencies.
- Our team was not experienced with C++, making it harder to

understand the code

Conclusion
- Source code for Chrome is extremely large – impossible to review the whole

code architecture.
- Confusing to work through many dependencies in different subsystems.
- Very little documentation of the function of each file.
- Architecture is an object oriented multi process architecture with implicit

invocation for IPC (Inter-Process-Communication).

